

### **Product Features**

- Compliant to QSFP112 MSA
- Form Factor of QSFP112 Type2
- Parallel 4 Optical Lanes
- Maximum Power Consumption 10W
- Compliant with IEEE Std 802.3ck,IEEE Std802.3bs
- MPO12 Receptacle with APC
- 4x106.25 Gb/s Electrical Interface (400 GAUI-4)
- Case operating temperature 0 to 70°C
- Up to 0.5km Transmission on Single Mode Fiber (SMF)
- Single +3.3V Power Supply
- RoHS Complaint

### **Application**

- 400G Ethernet
- Data Centers and Enterprise Networking

## **Description**

The 400G QSFP112 DR4 transceiver is designed for 0.5km optical communication applications and interconnection applications with digital diagnostics functions. The module converts 4 channels of 106.25Gb/s (PAM4) electrical input data to 4 channels of parallel optical signals, each channel of 106.25Gb/s operation for an aggregate data rate of 400Gb/s. An optical fiber cable with an MTP/MPO-12 connector can be plugged in to the 400G QSFP112 DR4 module receptacle. Support up to 0.5 km fiber transmission.

## **Absolute Maximum Ratings:**

| Parameter                   | Unit | Min. | Max. |
|-----------------------------|------|------|------|
| Storage Temperature         | °C   | -40  | 85   |
| Operating Relative Humidity | %    | 0    | 85   |
| Power Supply Voltage        | V    | -0.5 | 3.63 |
| Damage Threshold            | dBm  | 5    |      |



# **Recommended Operating Conditions:**

| Parameter                  | Unit | Min.  | Тур | Max.  |
|----------------------------|------|-------|-----|-------|
| Operating Case Temperature | °C   | 0     |     | 70    |
| Power Supply Voltage       | V    | 3.135 | 3.3 | 3.465 |
| Power Consumption          | W    |       |     | 10    |
|                            |      |       |     |       |
|                            |      |       |     |       |
| Link Distance (DR4)        | m    | 0     |     | 500   |

#### Notes:

- 1. FEC is provided by host system.
- 2. FEC is required on host system to support maximum distance.

### **Electrical Characteristics:**

| Parameter                                  | Min .                           | Тур.   | Max. | Unit | Note |  |
|--------------------------------------------|---------------------------------|--------|------|------|------|--|
| Transmitter                                |                                 |        |      |      |      |  |
| Signaling Rate, Per Lane                   |                                 | 53.125 |      | GBd  |      |  |
| Differential Pk-pk Input Voltage Tolerance |                                 | 900    |      | mV   |      |  |
| Common-mode to Differential Return Loss    | 802.3ck<br>Equation(1<br>20G-1) |        |      |      |      |  |
| Effective Return Loss                      |                                 |        |      |      |      |  |
| Differential Termination Mismatch          |                                 |        | 10   | %    |      |  |
| Single-ended Voltage Tolerance Range       | -0.4                            |        | 3.3  | V    |      |  |
| DC Common-mode Voltage                     | -350                            |        | 2850 | mV   |      |  |
| Receiver                                   |                                 |        |      |      |      |  |
| Signaling Rate Per Lane                    |                                 | 53.125 |      | GBd  |      |  |
| AC Common-mode Output Voltage(RMS)         |                                 | -      | 17.5 | mV   |      |  |
| Differential Peak-to-peak Output Voltage   |                                 |        | 900  | mV   |      |  |
| Near-end Eye Height, Differential          | 24                              |        |      | mV   |      |  |
| Near-end Vertical Eye Closure              | _                               |        | 7.5  | dB   |      |  |



| Far-end Eye Height, Differential                   | 24      |  |      | mV |  |
|----------------------------------------------------|---------|--|------|----|--|
| Far-end Vertical Eye Closure                       | 7.5     |  |      | dB |  |
| Common Mode to Differential Conversion Return Loss | 802.3ck |  |      | dB |  |
| Differential Termination Mismatch                  |         |  | 10   | %  |  |
| DC Common Mode Voltage                             | -350    |  | 2850 | mV |  |

# **Optical Characteristics:**

| Parameter                                                     | Unit           | Min .  | Тур.    | Max.   | Note |
|---------------------------------------------------------------|----------------|--------|---------|--------|------|
| Transmitter                                                   |                |        |         |        |      |
| Signaling Rate Each Lane                                      | GBd            |        | 53.1 25 |        |      |
| Lane Wavelength Range                                         | nm             | 1304.5 | 1310    | 1317.5 |      |
| Modulation Format                                             |                |        | PAM4    |        |      |
| Average Optical Power Per Lane                                | dBm            | -2.9   |         | 4      |      |
| Outer Optical Modulation Amplitude (OMAouter), Each Lane      | dBm            | -0.8   |         | 4.2    |      |
| Average Launch Power Per Lane @ TX Off State                  | dBm            |        |         | -15    |      |
| Launch Power in OMAouter Minus T<br>DECQ, Each Lane           | dB             | -2.2   |         |        |      |
| Transmitter and Dispersion Eye<br>Closure for PAM4, Each Lane | dB             |        |         | 3.4    |      |
| Extinction Ratio                                              | dB             | 3.5    |         |        |      |
| Relative Intensity Noise21 .4 (OMA)                           | dB/Hz          |        |         | -136   |      |
| Side-Mode Suppression Ration (SMS R)                          | dB             | 30     |         |        |      |
| Optical Return Loss Tolerance                                 | dB             |        |         | 21.4   |      |
| Transmitter Reflectance                                       | dB             |        |         | -26    |      |
| Receiver                                                      |                |        |         |        |      |
| Signaling Rate Each Lane                                      | GBd            |        | 53.125  |        |      |
| Lane Wavelength Range                                         | nm 1304.5 1310 |        | 1310    | 1317.5 |      |
| Modulation Format                                             |                |        | PAM4    |        |      |
| Damage Threshold                                              | dBm            | 5      |         |        |      |



| Average Receive Power, Each Lane                      | dBm | -5.9  |      | 4    |   |
|-------------------------------------------------------|-----|-------|------|------|---|
| Receiver Power, Each Lane (OMA)                       | dBm |       |      | 4.2  |   |
| Receiver Reflectance                                  | dB  |       |      | -26  |   |
| Receiver Sensitivity Each Lane (OMAouter)             | dBm |       |      | -3.9 | 1 |
| Stressed Receiver Sensitivity (OMAouter), Each        | dBm |       |      | -1.9 |   |
| Stressed Eye Closure for PAM4 (SECQ), Lane under Test | dB  |       | 3.4  |      |   |
| OMAouter of Each Aggressor Lane                       | dBm |       | 4.2  |      |   |
| RX_LOS_Assert Min/Max                                 | dBm | -15.0 |      |      |   |
| RX_LOS_De-Assert Min/Max                              | dBm |       |      | -8.9 |   |
| RX_LOS_Hysteresis                                     | dB  |       | 1 .5 |      |   |

#### Notes:

1. Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.4dB. It should meet Equation:RS=max (-3.9, -SECQ5.3), where RS is the receiver sensitivity, and SECQ is the SECQ of the transmitter used to measure the receiver sensitivity.

## **Pin Definition and Description**

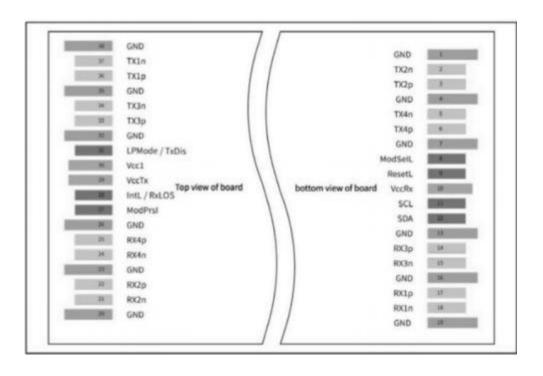





Table 1. Pin definition and descriptions

| Pin | Symbol            | Description                         | Plug Sequence | Note |
|-----|-------------------|-------------------------------------|---------------|------|
| 1   | GND               | Ground                              | 1             | 1    |
| 2   | TX2n              | Transmitted Inverted Data Input     | 3             |      |
| 3   | TX2p              | Transmitted Non-Inverted Data Input | 3             |      |
| 4   | GND               | Ground                              | 1             | 1    |
| 5   | TX4n              | Transmitted Inverted Data Input     | 3             |      |
| 6   | TX4p              | Transmitted Non-Inverted Data Input | 3             |      |
| 7   | GND               | Ground                              | 1             | 1    |
| 8   | ModSel            | Module Select                       | 3             |      |
| 9   | ResetL            | Module Reset                        | 3             |      |
| 10  | VCC Rx            | +3 .3 VDC Receiver Power Supply     | 2             | 2    |
| 11  | SCL               | Serial Clock for I2C Interface      | 3             |      |
| 12  | SDA               | Serial Data for I2C Interface       | 3             |      |
| 13  | GND               | Ground                              | 1             | 1    |
| 1 4 | RX3p              | Receiver Non-Inverted Data Output   | 3             |      |
| 15  | RX3n              | Receiver Inverted Data Output       | 3             |      |
| 1 6 | GND               | Ground                              | 1             | 1    |
| 17  | RX1p              | Receiver Non-Inverted Data Output   | 3             |      |
| 18  | RX1n              | Receiver Inverted Data Output       | 3             |      |
| 19  | GND               | Ground                              | 1             | 1    |
| 20  | GND               | Ground                              | 1             | 1    |
| 21  | RX2n              | Receiver Inverted Data Output       | 3             |      |
| 22  | RX2p              | Receiver Non-Inverted Data Output   | 3             |      |
| 23  | GND               | Ground                              | 1             | 1    |
| 24  | RX4n              | Receiver Inverted Data Output       | 3             |      |
| 25  | RX4p              | Receiver Non-Inverted Data Output   | 3             |      |
| 26  | GND               | Ground                              | 1             | 1    |
| 27  | Mod PrsL          | Module Present                      | 3             |      |
| 28  | IntL/Rx LOS       | Interrupt/optional Rx LOS           | 3             |      |
| 29  | VCCTx             | +3 .3 VDC Transmitter Power Supply  | 2             | 2    |
| 30  | VCC1              | +3 .3 VDC Power Supply              | 2             | 2    |
| 31  | LPMode/Tx<br>d is | Low Power Mode/optioan ITx Disable  | 3             |      |
| 32  | GND               | Ground                              | 1             | 1    |
| 33  | ТХ3р              | Transmitted Non-Inverted Data Input | 3             |      |
| 34  | TX3n              | Transmitted Inverted Data Input     | 3             |      |



| 35 | GND  | Ground                              | 1 | 1 |
|----|------|-------------------------------------|---|---|
| 36 | TX1p | Transmitted Non-Inverted Data Input | 3 |   |
| 37 | TX1n | Transmitted Inverted Data Input     | 3 |   |
| 38 | GND  | Ground                              | 1 | 1 |

#### Notes:

- 1. GND is the symbol for signal and supply (power) common for the QSFP 112 module. All are common within the QSFP 112 module and all voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VCC Rx, VCC 1 and VCC Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements, defined for the host side of the Host Edge Card Connector, are listed in Table 3 .Optical Characteristics. Recommended host board power supply filtering is shown in Figure 3. VCC Rx, VCC 1 and VCC Tx may be internally connected within the QSFP 112 module in any combination . The connector pins are each rated for a maximum current of 1.5A (max. current of 2.0 A is required for high module power of 15-20W).

## **Digital Diagnostic Monitoring Functions**

| Parameter              | Units | Error | Notes         |
|------------------------|-------|-------|---------------|
| Temperature Monitor    | °C    | ±3    | 1LSB= 1/256 ℃ |
| Supply Voltage Monitor | V     | ±0.1  | 1LSB= 100uV   |
| Bias Current Monitor   | mA    | ±10%  | 1LSB=2uA      |
| TX Power Monitor       | dBm   | ±3    | 1LSB=0. 1uW   |
| RX Power Monitor       | dBm   | ±3    | 1LSB=0. 1uW   |



# **Mechanical Specifications**

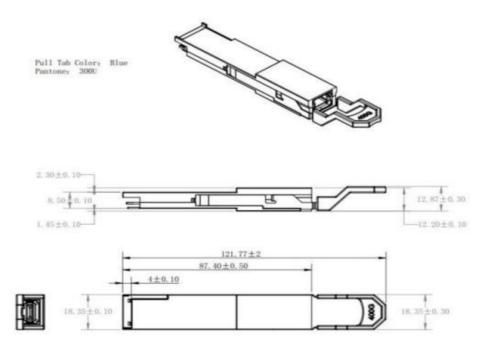



Figure 3. Mechanical dimensions