

- Support 100GBASE per lane in multimode fiber
- 8 channels full-duplex transceiver modules
- Transmission data rate up to 106.25G per channel
- 8x106.25Gbps PAM4 transmitter and PAM4 receiver
- 8 channels 850nm VCSEL array
- 8 channels PIN photo detector array
- Power consumption <14W per end
- Hot Pluggable OSFP form factor and Compliant with CMIS
- Built-in digital diagnostic functions
- Operating case temperature 0°C to +70°C
- 3.3V power supply voltage
- RoHS compliant

### Application

- Networks
- Data Centers and Cloud

#### Standards

- OSFP\_Module\_Specification\_Rev5.0
- CMIS V4.0
- IEEE 802.3db
- IEEE802.3ck

### Description

The 800G OSFP AOC is an eight-channel, pluggable, parallel fiber-optic transceiver designed for QSFP density and optimized for 800 Gigabit Ethernet applications. It serves as a high-performance module tailored for short-range, multi-lane data communication and interconnection scenarios. With the capability to integrate eight data lanes in each direction at a rate of 8x53.125 GBd, this transceiver ensures efficient data transmission.

Each data lane supports operation up to 106.25 Gbps over distances of up to 30 meters when using OM3 fiber and up to 50 meters with OM4 fiber, facilitated by Forward Error Correction (FEC). These modules function within multimode fiber systems, employing a nominal wavelength of 850nm.

### **Absolute Maximum Ratings**

Shenzhen Hi-Optel Technology Co., Ltd.



### 800G OSFP ACTIVE OPTICAL CABLE 850nm, 0~70°C



| Parameter                  | Unit | Min  | Мах     |  |
|----------------------------|------|------|---------|--|
| Supply Voltage             | V    | -0.3 | 3.6     |  |
| Input Voltage              | V    | -0.3 | Vcc+0.3 |  |
| Storage Temperature        | °C   | -20  | 85      |  |
| Case Operating Temperature | °C   | 0    | 70      |  |
| Humidity(non-condensing)   | %    | 5    | 95      |  |

# **Recommended Operating Conditions**

| Parameter                  | Unit | Min  | Typical | Max  |
|----------------------------|------|------|---------|------|
| Supply Voltage             | V    | 3.13 | 3.3     | 3.47 |
| Operating Case temperature | °C   | 0    |         | 70   |
| Data Rate Per Lane         | Gbps |      | 106.25  |      |
| Humidity                   | %    | 5    |         | 85   |
| Power Dissipation          | W    |      | 13.5    | 14   |

### **Electrical Specifications**

| Parameter                            | Unit  | Min     | Typical | Мах    |
|--------------------------------------|-------|---------|---------|--------|
| Differential input impedance         | ohm   | 90      | 100     | 110    |
| Differential Output impedance        | ohm   | 90      | 100     | 110    |
| Differential input voltage amplitude | mVp-p | 400     |         | 900    |
| Differential output voltage          | mVp-p |         |         | 850    |
| Bit Error Rate                       | -     |         |         | 2.4E-4 |
| Input Logic Level High               | V     | 2.0     |         | Vcc    |
| Input Logic Level Low                | V     | 0       |         | 0.8    |
| Output Logic Level High              | V     | Vcc-0.5 |         | Vcc    |
| Output Logic Level Low               | V     | 0       |         | 0.4    |
| Input Logic Level High               | V     | 2.0     |         | Vcc    |

Note:

1. BER=2.4E-4; PRBS31Q@53. 125GBd. Pre-FEC

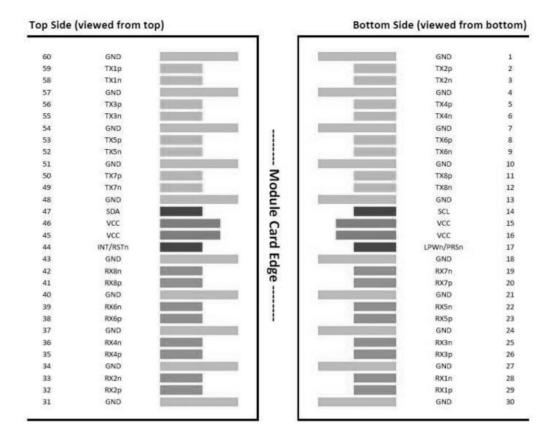
Shenzhen Hi-Optel Technology Co., Ltd.



- 2. Differential input voltage amplitude is measured between TxnP and TxnN.
- 3. Differential output voltage amplitude is measured between RxnP and RxnN.

# **Optical Characteristics**

| Parameter                                                              | Min  | Typical | Max                         | Unit | Notes |
|------------------------------------------------------------------------|------|---------|-----------------------------|------|-------|
| Transmitter                                                            |      |         | <u> </u>                    |      |       |
| Centre Wavelength                                                      | 840  | 850     | 860                         | nm   | -     |
| RMS spectral width                                                     | -    | -       | 0.65                        | nm   | -     |
| Average launch power, each lane                                        | -4.6 | -       | 5.5                         | dBm  | -     |
| Optical Modulation Amplitude<br>(OMAouter), each lane                  | -2.6 |         | 4                           | dBm  | -     |
| Transmitter and dispersion<br>eye closure for<br>PAM4(TDECQ),each lane |      |         | 4.4                         | dB   |       |
| Extinction Ratio                                                       | 2.5  | -       | -                           | dB   | -     |
| Average launch power of OFF transmitter, each lane                     |      |         | -30                         | dB   | -     |
| Receiver                                                               |      |         |                             |      |       |
| Centre Wavelength                                                      | 840  | 850     | 860                         | nm   | -     |
| Receiver Sensitivity in OMAout                                         |      |         | max (-<br>4.4,TECQ-<br>6.2) | dBm  | 1     |
| Stressed Receiver<br>Sensitivity in OMAout                             |      |         | -1.8                        | dBm  | 2     |
| Maximum Average power<br>at receiver , each lane<br>input, each lane   |      |         | 5.5                         | dBm  | -     |
| Minimum Average power at receiver , each lane                          | -6.3 |         |                             | dBm  |       |
| Receiver Reflectance                                                   |      |         | -15                         | dB   | -     |
| LOS Assert                                                             | -15  |         | -8.5                        | dBm  | -     |
| LOS De-Assert                                                          |      |         | -6.5                        | dBm  | -     |
| LOS Hysteresis                                                         | 0.5  |         |                             | dB   | -     |


Note:

1 .Measured with conformance test signal at TP3 for BER = 2.4E-4 Pre-FEC.



2 .These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

# **Pin Definition and Description**



#### Table 1. Pin definition and descriptions

| Pin | Symbol | Logic | Description                   | Note |
|-----|--------|-------|-------------------------------|------|
| 1   | GND    |       | Ground                        |      |
| 2   | TX2p   | CML-I | Transmitted Data Non-Inverted |      |
| 3   | TX2n   | CML-I | Transmitted Data Inverted     |      |
| 4   | GND    |       | Ground                        |      |
| 5   | TX4p   | CML-I | Transmitted Data Non-Inverted |      |
| 6   | TX4n   | CML-I | Transmitted Data Inverted     |      |
| 7   | GND    |       | Ground                        |      |
| 8   | TX6p   | CML-I | Transmitted Data Non-Inverted |      |
| 9   | TX6n   | CML-I | Transmitted Data Inverted     |      |
| 10  | GND    |       | Ground                        |      |
| 11  | TX8p   | CML-I | Transmitted Data Non-Inverted |      |
| 12  | TX8n   | CML-I | Transmitted Data Inverted     |      |

### 800G OSFP ACTIVE OPTICAL CABLE 850nm, 0~70°C



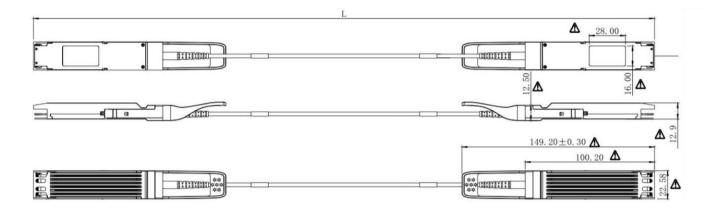
| 13 | GND       |             | Ground                          |   |
|----|-----------|-------------|---------------------------------|---|
| 14 | SCL       | LVCMOS-I/O  | 2-wire Serial Interface Clock   | 1 |
| 15 | VCC       |             | +3.3V Power                     |   |
| 16 | VCC       |             | +3.3V Power                     |   |
| 17 | LPWn/PRSn | Multi-Level | Low-Power Mode / Module Present | 2 |
| 18 | GND       |             | Ground                          |   |
| 19 | RX7n      | CML-O       | Receiver Data Inverted          |   |
| 20 | RX7p      | CML-O       | Receiver Data Non-Inverted      |   |
| 21 | GND       |             | Ground                          |   |
| 22 | RX5n      | CML-O       | Receiver Data Inverted          |   |
| 23 | RX5p      | CML-O       | Receiver Data Non-Inverted      |   |
| 24 | GND       |             | Ground                          |   |
| 25 | RX3n      | CML-O       | Receiver Data Inverted          |   |
| 26 | RX3p      | CML-O       | Receiver Data Non-Inverted      |   |
| 27 | GND       |             | Ground                          |   |
| 28 | RX 1n     | CML-O       | Receiver Data Inverted          |   |
| 29 | RX 1p     | CML-O       | Receiver Data Non-Inverted      |   |
| 30 | GND       |             | Ground                          |   |
| 31 | GND       |             | Ground                          |   |
| 32 | RX2p      | CML-O       | Receiver Data Non-Inverted      |   |
| 33 | RX2n      | CML-O       | Receiver Data Inverted          |   |
| 34 | GND       |             | Ground                          |   |
| 35 | RX4p      | CML-O       | Receiver Data Non-Inverted      |   |
| 36 | RX4n      | CML-O       | Receiver Data Inverted          |   |
| 37 | GND       |             | Ground                          |   |
| 38 | RX6p      | CML-O       | Receiver Data Non-Inverted      |   |
| 39 | RX6n      | CML-O       | Receiver Data Inverted          |   |
| 40 | GND       |             | Ground                          |   |
| 41 | RX8p      | CML-O       | Receiver Data Non-Inverted      |   |
| 42 | RX8n      | CML-O       | Receiver Data Inverted          |   |
| 43 | GND       |             | Ground                          |   |
| 44 | INT/RSTn  | Multi-Level | Module Interrupt / Module Reset | 2 |
| 45 | VCC       |             | +3.3V Power                     |   |
| 46 | VCC       |             | +3.3V Power                     |   |
| 47 | SDA       | LVCMOS-I/O  | 2-wire Serial Interface Clock   | 1 |
| 48 | GND       |             | Ground                          |   |
| 49 | TX7n      | CML-I       | Transmitted Data Inverted       |   |
| 50 | TX7p      | CML-I       | Transmitted Data Non-Inverted   |   |
| 51 |           | GND         | Ground                          |   |

Shenzhen Hi-Optel Technology Co., Ltd.

# 800G OSFP ACTIVE OPTICAL CABLE 850nm, 0~70°C



| 52 | TX5n  | CML-I | Transmitted Data Inverted     |  |
|----|-------|-------|-------------------------------|--|
| 53 | TX5p  | CML-I | Transmitted Data Non-Inverted |  |
| 54 |       | GND   | Ground                        |  |
| 55 | TX3n  | CML-I | Transmitted Data Inverted     |  |
| 56 | ТХЗр  | CML-I | Transmitted Data Non-Inverted |  |
| 57 |       | GND   | Ground                        |  |
| 58 | TX 1n | CML-I | Transmitted Data Inverted     |  |
| 59 | TX 1p | CML-I | Transmitted Data Non-Inverted |  |
| 60 |       | GND   | Ground                        |  |


Notes:

- 1. Open-Drain with pull up resistor on Host.
- 2. See pin description for required circuit.

### **Digital Diagnostic Specification**

| Parameter                         | Units | Min   | Typical | Max  | Notes          |
|-----------------------------------|-------|-------|---------|------|----------------|
| Transceiver Case Temperature      | °C    | -3    |         | +3   | Over operating |
| Supply voltage monitor absolute   | V     | -3%   |         | +3%  | Full operating |
| Channel RX power monitor absolute | dB    | -3    |         | +3   | Per channel    |
| Channel Bias current monitor      | mA    | - 10% |         | +10% | Per channel    |
| Channel TX power monitor absolute | dB    | -3    |         | +3   | Per channel    |

# **Mechanical Dimensions(mm)**

